



## VF-X100K676图像开发板

**V3.0** 













## CONTENTS 目录

- 01 SZOVS 公司介绍
- 02 Xilinx FPGA开发板介绍
- 03 XC7A100T FPGA芯片介绍
- 04 VF-X100K676 FPGA开发板介绍
- 05 VF-X100K676 Demo资料介绍
- 06 更多产品图片

# O1 PART









#### 深圳市奥唯思科技有限公司

SHENZHEN OVS TECHNOLOGY CO.,LTD.

深圳市深圳奥唯思科技有限公司,简称奥唯思(SZOVS),成立于2021年,坐落于深圳南山。公司核心团队有着数十年的**FPGA图像开发**经验,以及**多媒体ASIC**芯片设计积累。

公司专注于**FPGA图像处理**平台推广、**全国产ISP**相机研制、 **FPGA电子内窥镜系统**开发等,致力于为客户提供快速可量产、高性价比的FPGA图像加速解决方案。



Verilog HDL关键字



奥唯思,为FPGA图像而生......



#### 我是作者: FPGA界·韩老师



Coming Soon...



















2008年 2012年

2015年

2022年

2024年

2025年

杭州电子科技大学 (本科)

西安电子科技大学(硕士)

中兴微电子技术有限公司 (ZXIC)

深圳市奥唯思科技有限公司 (SZOVS)

#### 18年来,从FPGA到图像处理,从逻辑设计到时序约束

- ◆ 入行FPGA 18年,玩转易灵思、高云、Xilinx、Altera、Lattice、紫光、安路、京微雅阁等FPGA
- ◆ 写过近10本FPGA书籍,大部分已经是高校的授课教程,培养FPGA下一代
- ◆ 指导 + 培养过无数FPGA设计、ASIC原型验证工程师
- ◆ 任多个高校 外聘授课教师、企业导师









凭着FPGA行业十几年的技术积累,奥唯思帮客户快速方案落地,为**易灵思、高云、安路、Lattice、图为科技、创龙科技、思特威、成都微光**等知名企业提供FPGA图像解决方案,得到了市场广泛的支持与认可……

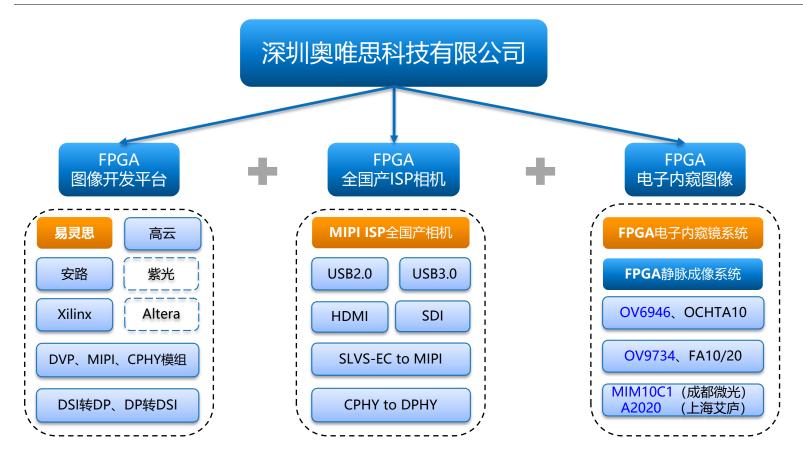










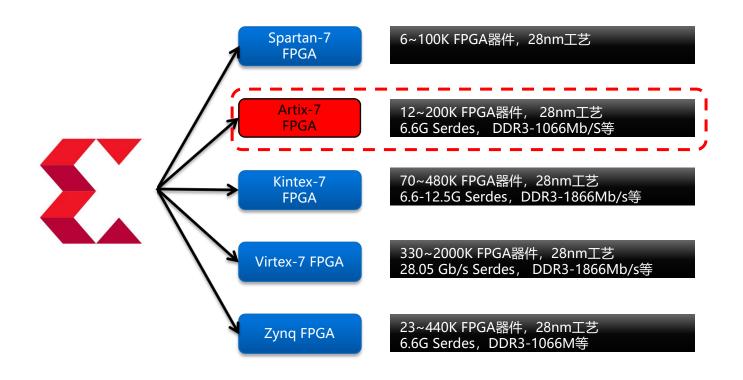



奥唯思,为FPGA图像而生……

www.szovs.com








# 02 PART



## Xilinx FPGA开发板介绍







#### FPGA开发板产品-赛灵思相关









VF-X100K676 赛灵思<mark>A7</mark> FPGA图像开发板



VF-X70K676 赛灵思K7 FPGA图像开发板



VF-Z7020 赛灵思<mark>ZYNQ</mark> FPGA开发板

| 뀣믁                         | 系列       | 资源           | 存储     | DVP<br>相机 | MIPI<br>相机 | 图像<br>接口                      | 通信接口                              | 特性描述                               |
|----------------------------|----------|--------------|--------|-----------|------------|-------------------------------|-----------------------------------|------------------------------------|
| VF-X25K255                 | Spartan7 | 25K          | DDR3   | <b>√</b>  |            | HDMI, LVDS, RGB<br>子卡         | UART<br>USB2.0 <del>卡</del>       | 配套《FPGA图像》1书<br>入门级25K FPGA开发板     |
| VF-X100K676<br>VF-X200K676 | Artix7   | 100K<br>200K | DDR3*2 | √         | √<br>双目    | HDMI, LVDS<br>MIPI CSI, RGB子卡 | UART PCIE2.0<br>SFP USB3.0<br>以太网 | 配套《FPGA图像》1书<br>进阶100/200K FPGA开发板 |
| VF-X70K676                 | Kintex7  | 70K          | DDR3*2 | √<br>双目   |            | HDMI, LVDS<br>RGB子卡           | UART PCIE2.0<br>SFP               | 配套《FPGA图像》1书<br>进阶70K FPGA开发板      |
| VF-Z7020                   | ZYNQ     | 85K          | DDR3   | V         | √          | RGB<br>HDMI                   | UART<br>以太网                       | 入门ZYNQ图像处理<br>完整的MIPI解决方案          |



#### CMOS摄像头模组





















| 型号                   | 厂家     | 色彩  | 靶面    | 像素     | 分辨率       | 曝光 | 帧率  | 接口        | 镜头  | 焦距     | 特性           |
|----------------------|--------|-----|-------|--------|-----------|----|-----|-----------|-----|--------|--------------|
| VS-SC535HGS          | 思特威    | 黑白  | 2/3   | 3.45um | 2440*2048 | 全局 | 80  | MIPI DPHY | СП  | 16mm   | 大靶面、高分、全局    |
| VS-SC233HGS          | 思特威    | 黑/彩 | 1/2.6 | 3.0um  | 1920*1080 | 全局 | 120 | MIPI DHPY | M12 | 3.6mm  | 全局、高速、1080P  |
| VS-SC130GS           | 思特威    | 黑/彩 | 1/2.7 | 4um    | 1280*1024 | 全局 | 240 | MIPI DHPY | M12 | 3.6mm  | 全局、高速、低照度    |
| VS-SC2210            | 思特威    | 彩色  | 1/1.8 | 4um    | 1920*1080 | 卷帘 | 60  | MIPI DPHY | M12 | 6mm    | 大靶面、低照度      |
| VS-SC101IOT          | 思特威    | 彩色  | 1/4.2 | 2.9um  | 1280*720  | 卷帘 | 30  | DVP 8bit  | M12 | 4mm    | 彩色、集成ISP     |
| <del>VS-IMX586</del> | 索尼     | 彩色  | 1/2   | 0.8um  | 8000*6000 | 卷帘 | 30  | MIPI CPHY | /   | 3.95mm | 4800万,CPHY相机 |
| VS-AR0135            | Aptina | 黑白  | 1/3   | 3.75um | 1280*1024 | 全局 | 60  | DVP 8bit  | M12 | 3.6mm  | 全局黑白、车规      |
| VS-MT9V034           | Micron | 黑白  | 1/3   | 6um    | 752*480   | 全局 | 60  | DVP 8bit  | M12 | 4mm    | 全局、850nm敏感   |
| VS-OV5640            | 豪威     | 彩色  | 1/4   | 1.4um  | 2592*1944 | 卷帘 | 15  | DVP 8bit  | M12 | 4mm    | 彩色,集成ISP     |
| VS-MT9M001           | Micron | 彩色  | 1/2   | 5.2um  | 1280*1024 | 卷帘 | 30  | DVP 8bit  | M12 | 8mm    | 大靶面、低成本      |

备注: 提供基于Xilinx FPGA的驱动Demo

# 03 PART



### XC7A100T FPGA 芯片介绍





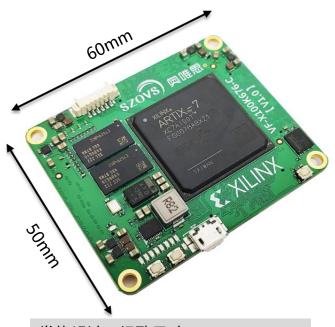
#### **Artix-7 FPGAs**

|                      |                                                        |                  | inization at the t | .owest cost and | ingliest Dar Dalit | uwium       |             |           |             |
|----------------------|--------------------------------------------------------|------------------|--------------------|-----------------|--------------------|-------------|-------------|-----------|-------------|
|                      |                                                        | 1.0V, 0.95V, 0.9 | -                  |                 |                    |             |             | Ven 4400m |             |
|                      | Part Number                                            | XC7A12T          | XC7A15T            | XC7A25T         | XC7A35T            | XC7A50T     | XC7A75T     | XC7A100T  | XC7A200T    |
| Logic                | Logic Cells                                            | 12,800           | 16,640             | 23,360          | 33,280             | 52,160      | 75,520      | 101,440   | 215,360     |
| Resources            | Slices                                                 | 2,000            | 2,600              | 3,650           | 5,200              | 8,150       | 11,800      | 15,850    | 33,650      |
|                      | CLB Flip-Flops                                         | 16,000           | 20,800             | 29,200          | 41,600             | 65,200      | 94,400      | 126,800   | 269,200     |
| 100                  | Maximum Distributed RAM (Kb)                           | 171              | 200                | 313             | 400                | 600         | 892         | 1,188     | 2,888       |
| Memory<br>Resources  | Block RAM/FIFO w/ ECC (36 Kb each)                     | 20               | 25                 | 45              | 50                 | 75          | 105         | 135       | 365         |
| Resources            | Total Block RAM (Kb)                                   | 720              | 900                | 1,620           | 1,800              | 2,700       | 3,780       | 4,860     | 13,140      |
| Clock Resources      | CMTs (1 MMCM + 1 PLL)                                  | 3                | 5                  | 3               | 5                  | 5           | 6           | 6         | 10          |
| 1/0 B                | Maximum Single-Ended I/O                               | 150              | 250                | 150             | 250                | 250         | 300         | 300       | 500         |
| I/O Resources        | Maximum Differential I/O Pairs                         | 72               | 120                | 72              | 120                | 120         | 144         | 144       | 240         |
|                      | DSP Slices                                             | 40               | 45                 | 80              | 90                 | 120         | 180         | 240       | 740         |
|                      | PCle® Gen2 <sup>(1)</sup>                              | 1                | 1                  | 1               | 1                  | 1           | 1           | 1         | 1           |
| Embedded             | Analog Mixed Signal (AMS) / XADC                       | 1                | 1                  | 1               | 1                  | 1           | 1           | 1         | 1           |
| Hard IP<br>Resources | Configuration AES / HMAC Blocks                        | 1                | 1                  | 1               | 1                  | 1           | 1           | 1         | 1           |
|                      | GTP Transceivers (6.6 Gb/s Max<br>Rate) <sup>(2)</sup> | 2                | 4                  | 4               | 4                  | 4           | 8           | 8         | 16          |
|                      | Commercial Temp (C)                                    | -1, -2           | -1, -2             | -1, -2          | -1, -2             | -1, -2      | -1, -2      | -1, -2    | -1, -2      |
| Speed Grades         | Extended Temp (E)                                      | -2L, -3          | -2L, -3            | -2L, -3         | -2L, -3            | -2L, -3     | -2L, -3     | -2L, -3   | -2L, -3     |
|                      | Industrial Temp (I)                                    | -1, -2, -1L      | -1, -2, -1L        | -1, -2, -1L     | -1, -2, -1L        | -1, -2, -1L | -1, -2, -1L | -121L     | -1, -2, -1L |
|                      | Dimensione Ball Bitale                                 |                  |                    |                 |                    |             |             |           |             |

Transceiver Optimization at the Lowest Cost and Highest DSP Bandwidth

|            | Package <sup>(3), (4)</sup> Dimensions Ball Pitch<br>(mm) (mm) |         |     | Available User I/O: 3.3V SelectIO™ HR I/O (GTP Transceivers) |         |         |         |         |         |         |          |
|------------|----------------------------------------------------------------|---------|-----|--------------------------------------------------------------|---------|---------|---------|---------|---------|---------|----------|
|            | CPG236                                                         | 10 x 10 | 0.5 |                                                              | 106 (2) |         | 106 (2) | 106 (2) |         |         |          |
|            | CPG238                                                         | 10 x 10 | 0.5 | 112 (2)                                                      |         | 112 (2) |         |         |         |         |          |
|            | CSG324                                                         | 15 x 15 | 0.8 |                                                              | 210 (0) |         | 210 (0) | 210 (0) | 210 (0) | 210 (0) |          |
|            | CSG325                                                         | 15 x 15 | 0.8 | 150 (2)                                                      | 150 (4) | 150 (4) | 150 (4) | 150 (4) |         |         |          |
|            | FTG256                                                         | 17 x 17 | 1.0 |                                                              | 170 (0) |         | 170 (0) | 170 (0) | 170 (0) | 170 (0) |          |
|            | SBG484                                                         | 19 x 19 | 0.8 |                                                              |         |         |         |         |         |         | 285 (4)  |
| Footprint  | FGG484 <sup>(5)</sup>                                          | 23 x 23 | 1.0 |                                                              | 250 (4) |         | 250 (4) | 250 (4) | 285 (4) | 285 (4) |          |
| Compatible | FBG484 <sup>(5)</sup>                                          | 23 x 23 | 1.0 |                                                              |         |         |         |         |         | 345     | 285 (4)  |
| Footprint  | FGG676 <sup>(6)</sup>                                          | 27 x 27 | 1.0 |                                                              |         |         |         |         | 300 (8) | 300 (8) |          |
| Compatible | FBG676 <sup>(6)</sup>                                          | 27 x 27 | 1.0 |                                                              |         |         |         |         |         |         | 400 (8)  |
|            | FFG1156                                                        | 35 x 35 | 1.0 |                                                              |         |         |         |         |         |         | 500 (16) |



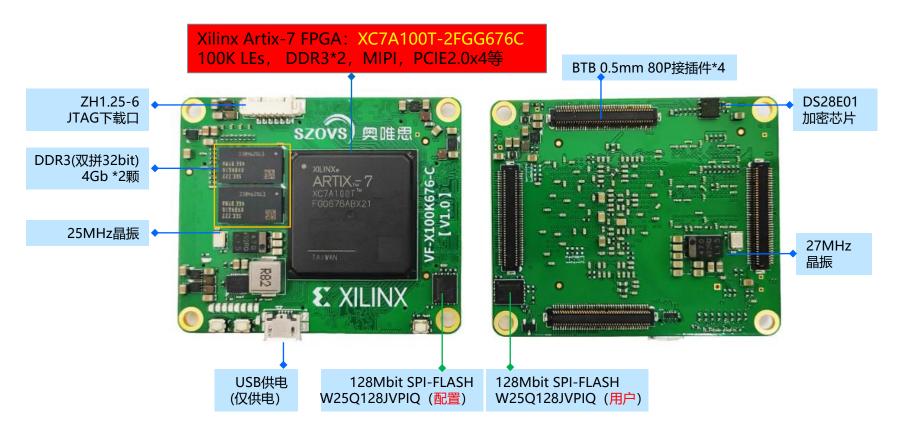

# O<sub>4</sub> PART



## VF-X100K676 开发板介绍








发烧设计,极致尺寸; 工匠品质,为FPGA而生

| 参数      | 描述                                      |
|---------|-----------------------------------------|
| 供应商     | 奥唯思 科技                                  |
| 核心板型号   | VF-X100K676-C                           |
| FPGA厂家  | Xilinx (赛灵思) Artix-7系列                  |
| FPGA型号  | XC7A100T-2FGG676                        |
| FPGA资源  | 100K 逻辑单元,6.25G Serdes ,DDR3 IP,PCIE2.0 |
| DDR3存储  | 4G 16bit*2颗 DDR3: K4B4G1646E            |
| PCBA尺寸  | 60mm *50mm                              |
| PCB工艺   | 8层 1.6mm 沉金 亚黑                          |
| 板载FLASH | 128Mbit SPI FLASH: W25Q128JVPIQ         |
| 用户FLASH | 128Mbit SPI FLASH: W25Q128JVPIQ         |
| 板子外设    | 2个用户按键,1个USB供电口,8个测试LED                 |
| 其他接口    | 板载ZH1.25-6 JTAG下载口                      |
| B2B接口   | 4个0.5mm双排80P B2B接插件 (母座*4)              |
| 供电      | 集成USB Mini供电口   B2B接插件输入5V DC           |





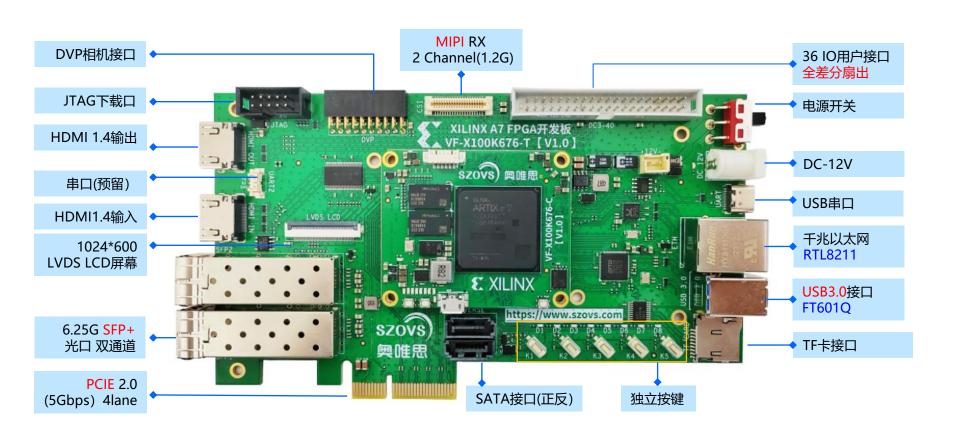




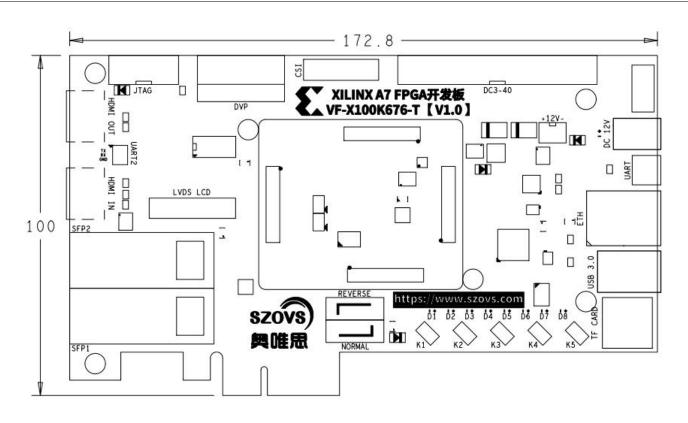




| 参数        | 描述                                                           |
|-----------|--------------------------------------------------------------|
| 供应商       | 奥唯思 科技                                                       |
| 核心板型号     | VF-X100K676                                                  |
| FPGA厂家    | Xilinx (赛灵思) Artix-7系列                                       |
| FPGA型号    | XC7A100T-2FGG676C                                            |
| FPGA资源    | 100K 逻辑单元, 6.25G Serdes, DDR3 IP, PCIE2.0                    |
| 千兆太网接口    | 基于RTL8211 PHY,支持100/1000M以太网通信                               |
| USB3.0接口  | 基于FTDI的FT601Q,支持USB3.0/2.0通信                                 |
| SFP光口     | 基于FPGA Serdes,支持2路6.25Gbps 光口通信                              |
| HDMI 输入   | 基于FPGA TMDS,最高支持1080P60                                      |
| HDMI 输出   | 基于FPGA TMDS,最高支持1080P60                                      |
| DVP相机接口   | 支持奥唯思全系列DVP相机,包括OV5640、MT9V034、<br>AR0135、SC130GS等3.3V DVP模组 |
| MIPI RX接口 | 支持奥唯思全系列MIPI相机,包括SC130GS、SC2210、<br>SC200AI、SC235HGS等MIPI模组  |


终极FPGA图像图像开发板

其他特色


平台包含了UART、SPI 、I2C 、TF Card 、GPIO(LED/KEY) 等RSIC-V必备的外设,无缝支持 RISC-V FPGA原型验证平台











# 05 PART



### FPGA开发板 Demo资料介绍



#### FPGA开发板 基础Demo介绍



| 序号 | 工程名                      | 设计描述                  |
|----|--------------------------|-----------------------|
| 1  | 01_LED_8bit_Test         | LED流水灯测试实验(核心板)       |
| 2  | 02_KEY_2bit_Test         | 独立按键测试实验(核心板)         |
| 3  | 03_FPGA_UART_Test_Bottom | UART串口测试实验            |
| 4  | 04_FPGA_DDR3_Test        | DDR3读写测试实验(核心板)       |
| 5  | 05_RGBLCD_Test_800480    | 800*480 RGBLCD显示实验    |
| 6  | 06_LVDS_LCD_Test_1024600 | 1024*600 LVDS LCD显示实验 |
| 7  | 07_HDMI_Disp_Test_720P   | 1280*720@60 HDMI显示实验  |
| 8  | 08_HDMI_Disp_Test_1080P  | 1920*1080@60 HDMI显示实验 |
| 9  | 09_FT601_USBSS_Test      | FT601 USB3.0通路测试实验    |
| 10 | 10_RGMII_Eth_Test        | RGMII 读写测试实验          |
| 11 | 11_PCle_Test             | PCIE2.0 Linkup测试实验    |
| 12 | 12_SFP_Test              | 6.25Gbps SFP回环测试实验    |



#### FPGA开发板 摄像头Demo



| 序号 | 工程名                                  | 设计描述                                          |
|----|--------------------------------------|-----------------------------------------------|
| 1  | 01-1_CMOS_AR0135_HDMI_720P           | 基于AR0135 DVP相机的HDMI屏720P成像案例                  |
| 2  | 01-2_CMOS_AR0135_RGBLCD_800480       | 基于AR0135 DVP相机的RGB屏(800*480)成像案例              |
| 3  | 02-1_CMOS_SC130GS_Gray_HDMI_720P     | 基于SC130S MIPI 4lane相机的HDMI屏720P成像案例           |
| 4  | 02-2_CMOS_SC130GS_Gray_LVDS_1024600  | 基于SC130S MIPI 4lane相机的LVDS屏(1024*600)成像案例     |
| 5  | 02-3_CMOS_SC130GS_Gray_RGBLCD_800480 | 基于SC130S MIPI 4lane相机的RGB屏(800*480)成像案例       |
| 6  | 03-1_CMOS_SC2210_HDMI_1080P          | 基于SC2210 MIPI 4lane相机的HDMI屏1080P成像案例          |
| 7  | 03-2_CMOS_SC2210_LVDS_1024600        | 基于SC2210 MIPI 4lane相机的LVDS屏(1024*600)成像案例     |
| 8  | 03-3_CMOS_SC2210_RGB_800480          | 基于SC2210 MIPI 4lane相机的RGB LCD屏(800*480)成像案例   |
| 9  | 04-1_CMOS_SC233HGS_HDMI_1080P        | 基于SC233HGS MIPI 4lane相机的HDMI屏1080P成像案例        |
| 10 | 04-2_CMOS_SC233HGS_LVDS_1024600      | 基于SC233HGS MIPI 4lane相机的LVDS屏(1024*600)成像案例   |
| 11 | 04-3_CMOS_SC233HGS_RGB_800480        | 基于SC233HGS MIPI 4lane相机的RGB LCD屏(800*480)成像案例 |

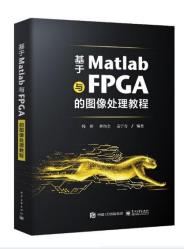
备注: DVP与LVDS不能同时用,因此AR0135没有LVDS LCD工程



#### FPGA开发板 图像Demo介绍 (AR0135+SC130GS黑白)



| 序号 | 工程名                        | 设计描述                     |
|----|----------------------------|--------------------------|
| 1  | 3.1_Histgram_EQ            | 直方图均衡算法FPGA加速            |
| 2  | 3.2_Image_Constrast        | 对比度增强算法FPGA加速            |
| 3  | 3.3_Gamma_Mapping          | Gamma映射算法FPGA加速          |
| 4  | 4.1_Avg_Filter             | 均值滤波算法FPGA加速             |
| 5  | 4.2_Med_Filter             | 中值滤波算法FPGA加速             |
| 6  | 4.3_Gaussian_Filter        | 高斯滤波算法FPGA加速             |
| 7  | 4.4_Bilateral_Filter       | 双边滤波算法FPGA加速             |
| 8  | 5.3_Region_Binarization    | 局部阈值二值化算法FPGA加速          |
| 9  | 5.4_Sobel_Edge_Detector    | Sobel边缘检测算法FPGA加速        |
| 10 | 5.5_Bin_Erosion_Dilation   | 腐蚀、膨胀算法FPGA加速            |
| 11 | 5.6_Frame_Difference_Test  | 基于帧间差的运动追踪算法FPGA加速       |
| 12 | 6.2_Robert_Sharpen         | 基于Robert算子锐化算法FPGA加速     |
| 13 | 6.3_Sobel_Sharpen          | 基于Sobel算子锐化算法的FPGA加速     |
| 14 | 6.4_Laplacian_Sharpen      | 基于Laplacian算子锐化算法的FPGA加速 |
| 15 | 7.1_Nearest_Interpolation  | 最近邻域插值缩放算法的FPGA加速        |
| 16 | 7.2_Bilinear_Interpolation | 双线性插值缩放算法的FPGA加速         |
| 17 | 8.1_Lenet_Test             | Lenet5手写数字识别             |

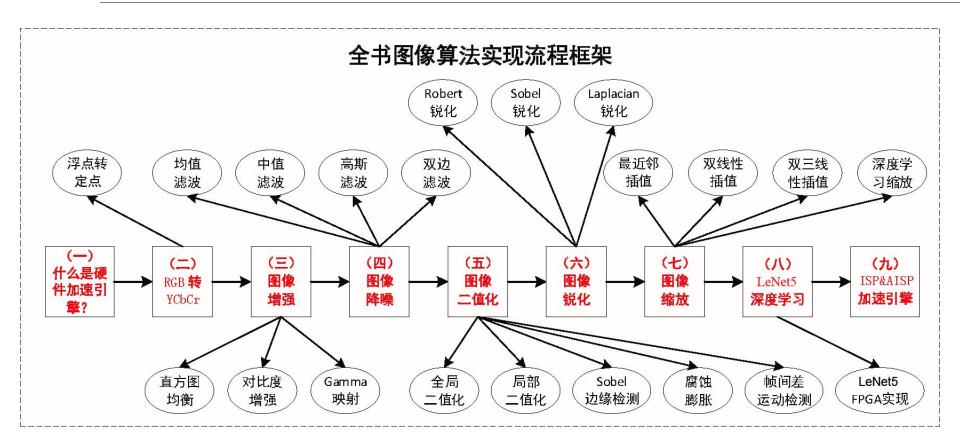



#### 配套《基于MATLAB与FPGA的图像处理》



#### 目录

- 第1章 什么是硬件加速引擎
- 第2章 RGB转YCbCr算法介绍及MATLAB与FPGA实现
- 第3章 常用图像增强算法介绍及MATLAB与FPGA实现
- 第4章 常用图像降噪算法介绍及MATLAB与FPGA实现
- 第5章 常用图像二值化算法介绍及MATLAB与FPGA实现
- 第6章 常用图像锐化算法介绍及MATLAB与FPGA实现
- 第7章 常用图像缩放算法介绍及MATLAB与FPGA实现
- 第8章 基于LeNet5的深度学习算法介绍及MATLAB与FPGA实现
- 第9章 传统ISP及AISP的图像处理硬件加速引擎介绍




- 国内第一本基于MATLAB/FPGA的图像处理教程
- FPGA图像算法硬件加速进阶(中级学者)
- **2024已累积销售近万本**,受广泛好评
- 目前已经被多家高校选定,作为大学教材
- Bilibili连载视频教程(基于本FPGA开发板)



#### FPGA终点: 图像算法开发







#### FPGA开发板 套餐介绍



可选







1024\*600 LVDS液晶屏

800\*480 RGB IPS触摸屏







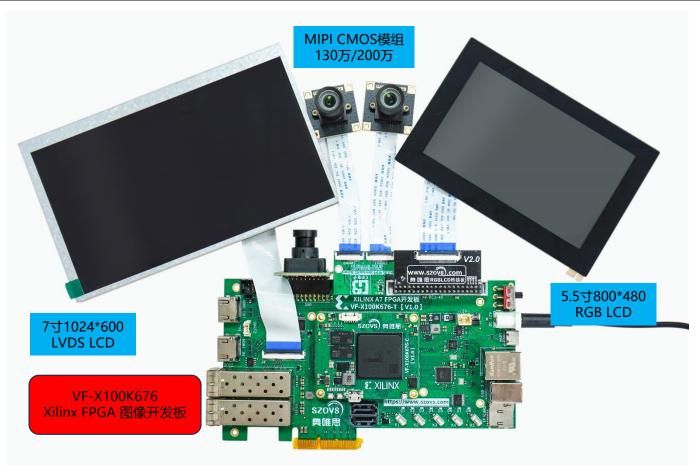




Xilinx FPGA下载器

AR0135 (DVP) 130万全局黑白

SC130GS (MIPI) 130万全局黑白


200万卷帘彩色

SC233HGS (MIPI) 200万全局黑白

SC2210 (MIPI)





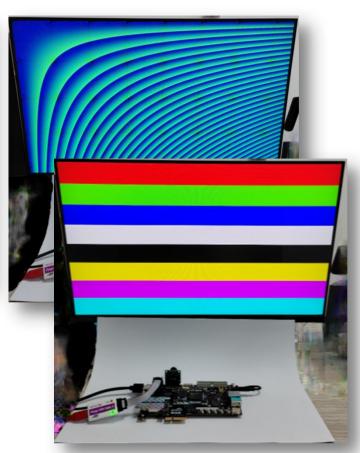


# 06 PART



更多图片展示



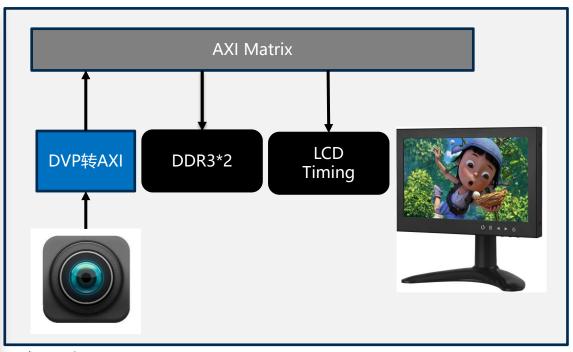

#### 基于DDR3的HDMI 1080P显示Demo





#### 测试场景介绍:

DDR3:800MHz (2颗)HDMI输出:LVDS模拟1920\*1080@60输出图像






#### 基于SC130GS/SC2210的实时HDMI 720P/1080P60显示







#### 测试场景介绍:

1) SC130GS: 1280\*720@60黑白全局曝光相机 2) SC2210: 1920\*1080@60彩色卷帘曝光相机 3) DDR3+HDMI: AXI总线+720P/1080P RGB输出



#### 奥唯思,为FPGA图像而生...

## **THANKS**

官方网站: www.szovs.com (资料下载)

官方淘宝: <a href="https://szovs.taobao.com">https://szovs.taobao.com</a>

"奥唯思FPGA"店铺

FPGA论坛: <u>www.crazyfpga.com</u>

FPGA交流群: 851598171 (QQ)



♀ 深圳市南山区朗山路11号同方科兴科学园E栋501



CrazyFPGA 公众号



深圳奥唯思 官微



企微业务 联系方式